Korteweg-de Vries Equation in Bounded Domains

نویسنده

  • Nikolai A. Larkin
چکیده

where μ, ν are positive constants. This equation, in the case μ = 0, was derived independently by Sivashinsky [1] and Kuramoto [2] with the purpose to model amplitude and phase expansion of pattern formations in different physical situations, for example, in the theory of a flame propagation in turbulent flows of gaseous combustible mixtures, see Sivashinsky [1], and in the theory of turbulence of wave fronts in reaction-diffusion systems, Kuramoto [2]. The generalized KdV-KS equation (1.1) arises in modeling of long waves in a viscous fluid flowing down on an inclined plane. When ν = 0, we have the KdV equation studied by various authors [6-12]. From the mathematical point of a view, the history of the KdV equation is much longer than the one of the KS equation. Well-posedness of the Cauchy problem for the KdV equation in various classes of solutions was studied in [6-9]. Solvability of mixed problems for the KdV equation and for the KdV equation with dissipation in bounded domains studied Bubnov [11], Hublov [12], see also

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Novel Approach for Korteweg-de Vries Equation of Fractional Order

In this study, the localfractional variational iterationmethod (LFVIM) and the localfractional series expansion method (LFSEM) are utilized to obtain approximate solutions for Korteweg-de Vries equation (KdVE) within local fractionalderivative operators (LFDOs). The efficiency of the considered methods is illustrated by some examples. The results reveal that the suggested algorithms are very ef...

متن کامل

Forced oscillations of a damped‎ ‎Korteweg-de Vries equation on a periodic domain

‎In this paper‎, ‎we investigate a damped Korteweg-de‎ ‎Vries equation with forcing on a periodic domain‎ ‎$mathbb{T}=mathbb{R}/(2pimathbb{Z})$‎. ‎We can obtain that if the‎ ‎forcing is periodic with small amplitude‎, ‎then the solution becomes‎ ‎eventually time-periodic.

متن کامل

The tanh method for solutions of the nonlinear modied Korteweg de Vries equation

In this paper, we have studied on the solutions of modied KdV equation andalso on the stability of them. We use the tanh method for this investigationand given solutions are good-behavior. The solution is shock wave and can beused in the physical investigations

متن کامل

Exact Boundary Controllability for the Linear Korteweg-de Vries Equation - a Numerical Study

The exact boundary controllability of linear and nonlinear Korteweg-de Vries equation on bounded domains was established in [15] by means of Hilbert Uniqueness Method. The aim of these notes is to illustrate this approach by numerical simulations. 256 ESAIM: Proc., Vol. 4, 1998, 255-267

متن کامل

Adomian Polynomial and Elzaki Transform Method of Solving Fifth Order Korteweg-De Vries Equation

Elzaki transform and Adomian polynomial is used to obtain the exact solutions of nonlinear fifth order Korteweg-de Vries (KdV) equations. In order to investigate the effectiveness of the method, three fifth order KdV equations were considered. Adomian polynomial is introduced as an essential tool to linearize all the nonlinear terms in any given equation because Elzaki transform cannot handle n...

متن کامل

New analytical soliton type solutions for double layers structure model of extended KdV equation

In this present study the double layers structure model of extended Korteweg-de Vries(K-dV) equation will be obtained with the help of the reductive perturbation method, which admits a double layer structure in current plasma model. Then by using of new analytical method we obtain the new exact solitary wave solutions of this equation. Double layer is a structure in plasma and consists of two p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004